

    
      
          
            
  
Welcome to genephys’ documentation

genephys is a Python tool to simulate electrophysiological data during a psychometric
experiment, where for instance two stimuli are presented to a subject while
EEG or MEG data is recorded. The toolbox generates data both during baseline
and after stimulation, continuously or in trials.
The data can be analysed using decoding analysis, and the results
compared to decoding results from real data .
To help with that, the package also provides basic decoding tools.

The generative model is described in this paper#1,
and a Jupyter notebook reproducing the main results is also available
here#2.

Check usage section for further information.


Note

This project is under active development.
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Installation

The code is hosted on PyPI and will be updated relatively slowly.
The code is also hosted on Github#1, which might have more frequent updates.

To install with pip:

python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps genephys
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Generating Resting state data

Although the main purpose of the toolbox is to generate data under stimulation, it can also be used
to generate resting-state activity (i.e. with no stimulation).  The resting-state data is also the basis
to generate data under stimulation, as will be described later.

To generate data we need to specify two dictionaries of options, one regarding the ongoing activity,
and another regarding the task activity.
In the task activity one, we can specify which types of task effects we will have;
we will specify all types to be off:

evoked_options_empty = {
    "phase_reset": False,
    "amplitude_modulation": False,
    "additive_response": False,
    "additive_oscillation": False}





Ongoing, resting-state data have spontaneously time-varying amplitude and frequency.
Note that we use amplitude in the sense of the square of power,
i.e. it does not contain phase information.
Specifically, the spontaneous, instantaneous amplitude and frequency evolve separately from each
other, according to some random walk (specifically, an autoregressive process of order 1).
More specifically, the dynamics of the time series depend on the
parameters AMP_AR_W (for amplitude) and FREQ_AR_W (for frequency).
These are positive values equal or lower than 1.0.
The closer to 1.0 are these values, the smoother and slower are the variations;
on the other hand, lower values will result in more abrupt changes, as
the autocorrelation of the frequency/amplitude time series becomes lower.

The other relevant parameters are FREQ_RANGE and AMP_RANGE.
Both are tuples of two numbers indicating the lower and higher
values that frequency and amplitude can take (i.e. their range of values).
That is, after sampling the frequency and amplitude time series,
these will be rescaled to lie within the limits of
FREQ_RANGE and AMP_RANGE, respectively.
Frequency is expressed as angular frequency,
so it is independent of the sampling frequency of the data.
Amplitude is given here as a multiplying factor, so if the amplitude value at a given time point is 2.0,
then this doubles the signal’s default amplitude, whereas, if it is 0.5, it halves it.

Also, there is measurement white noise,
with standard deviation specified by the parameter MEASUREMENT_NOISE.

The dictionary with the options for the rest data could be something like:

spont_options = {
    "FREQ_RANGE": [0.01, math.pi/4],
    "AMP_RANGE": [0.5, 2],
    "FREQ_AR_W": 0.95},
    "AMP_AR_W": 0.99,
    "MEASUREMENT_NOISE": 0.5
    }





To create the sampler object, we call the DataSampler construct, with parameters:


	Number of time points within a trial.


	Number of channels


	Number of classes/stimuli (in this case None)


	The dictionary with the options for the ongoing activity


	The dictionary with the options for the task effect (in this case with effects off)




Then we can call the method sample with one parameter which is the number of trials.
Note that we can get continuous data just by setting T equal to the total number of time points
in the session and N=1.
Altogether:

ds_rest = sample_data.DataSampler(T,nchan,None,spont_options,evoked_options_empty)
(X,Phase,Freq,Amplitude,Additive_event,Stimulus) = ds_rest.sample(N) # N trials





The method sample() returns six different time series, all numpy arrays
of dimension (time by trials by channels), excepting Stimulus
(which is time by trials; see below).


	X: The signal


	Phase: The phase of the signal


	Freq: The instantaneous frequency of the signal


	Amplitude: The amplitude of the signal (square root of the power)


	Additive_response: The additive (non-oscillatory plus oscillatory) response


	Stimulus: The stimulus information




Note that phase, frequency and amplitude refer to the ongoing (possibly phase reset)
signal, before any additive response or measurement noise is added.
For one channel and one trial, an example of these time series looks like:


[image: Example signal]

Generated time series (blue), decomposed by phase, instantaneous frequency
and instantaneous amplitude (red).



Note that the channel signals are separately sampled one by one,
so, in the absence of stimulation, there is no dependences between them (asymptotically).
Optionally, we can can specify a “head model” in the form of a
(number of channels by number of sensor) numpy matrix,
so that we can project the time series into a higher-dimensional
“sensor space” with correlations between the time series:

X_sensor_space = ds_rest.project(X,head_model)
Phase_sensor_space = ds_rest.project(Phase,head_model)
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Generating task data

Up until now, we have sampled data with spontaneous dynamics under no stimulation.
We now show how to generate the different kind of effects that a stimulus could produce.
From now on we will use the terms condition and stimulus indistinctly.
(“Stimuli” is actually just as a convention here;
for the sake of this generative model,
this is a perturbation of the system that could also be because of an action or a decision).
We will assume there are Q different conditions.
Then, we will see how the synthetic data look through the lens of decoding analysis,
where we aim at finding discriminative subpaces between the conditions in the data.
The generated effects can be condition-specific,
i.e. the way we generate the signals is dependent on the condition,
so that a decoder can use this information for prediction;
or occur across conditions,
so that the generative process is not specific of the condition,
but still may modulate the behaviour of the decoder.
The possible effects are:


	A phase effect, composed of phase-resetting to a condition-specific target phase and
then frequency entraining to a certain target frequency.


	An amplitude increase on the ongoing oscillation (with no phasic alteration)
by a (possibly stimulus-specific) factor, following stimulus presentation.


	A set of additive non-oscillatory responses with condition-specific signal values.


	An additive oscillatory responses with condition-specific phase, frequency and amplitude.




To activate one or more of the three type of effects, we will use the dictionary keys
phase_reset, amplitude_modulation, additive_response and additive_oscillation,
which can take True or False values.

The temporal aspects of these effects is regulated by response functions,
which determine how the effects progressively build up, reach a maximum, and then wane off.
This is explained below.
Also, we can control the delays (how long it takes to respond after stimulus presentation)
per channel (relative delays)
or across channels (absolute delays).
This can be subject to between-trial noise or not; see also below.

Also, whether each channel responds to stimulation or not
(i.e. whether it activates) is stochastic.
To adjust the probability of activation, we use the dictionary key CHAN_PROB,
which can take a single value if we want
all the channels to have the same probability of activation, or
a numpy 1D array with as many elements as channels (with one probability per channel).
If we wish to experiment with the effect of having irrelevant channels on the decoding,
we can just set some values of CHAN_PROB to 0.0.

An example of task data can be generated as

chan_prob = np.zeros(nchan)
chan_prob[0:round(nchan/2)] = 1/4

evoked_options = {
    "phase_reset": True,
    "amplitude_modulation": True,
    "additive_response": False,
    "additive_oscillation": False,
    "CHAN_PROB": chan_prob
    }

ds_task = sample_data.DataSampler(T,nchan,None,spont_options,evoked_options)
(X,Phase,Freq,Amplitude,transient_event,stimulus) = ds_task.sample(N)





The four effects, together with channel probability activation,
the delays, and the different response functions,
create a plethora of possibilities of how to generate stimulus-specific effects on the ongoing signal.
In the accompanying paper#1,
we have non-exhaustively explored a few of these combinations,
and seen that some combinations will match the characteristics of real data better than others.
We next describe how to parametrise the three effects: phase, amplitude and additive responses.


Phase effects

A phase effect first produces a phase reset of the ongoing oscillation,
and, once it hits the target phase,
it entrains at a certain frequency for some time.
To have a phase effect, we have to specify phase_reset=True
in the task options dictionary.

The phase at which channels reset is given by sampling from a von Mises distribution
(the circular version of the Gaussian),
where the sampling is done per trial.
The mean of this distribution is given by the dictionary key PH,
which can be a numpy 2D array with dimension
(Q by channels —where Q is the number of conditions) or 1D with Q elements
(such that all channels reset to the same phase on average).
If PH is not specified, then the key DIFF_PH will be used to generate PH.
Then, the condition mean phases will be spanned
within a range (-0.5 DIFF_PH, +0.5 DIFF_PH)
For example, if DIFF_PH=\({\pi}\) (the default value) and there are Q=2 conditions,
then the mean phase of the first condition will be \(-0.5 {\pi}\)
and the mean phase of the second condition will be
\(+0.5 {\pi}\). If there are Q=3 conditions, then the first is \(-0.5 {\pi}\),
the second is 0.0, and the third is \(+0.5 {\pi}\).
In general, \({\pi}\) is the largest value this parameter can take,
since that is the maximum angular distance;
lower values than \({\pi}\) will make the decoding problem harder because the conditions’
phase distributions will be more overlapping.

The standard deviation of the phase distribution (at which channels reset)
will determine how noisy is the phase resetting.
The standard deviation is given by the key STD_PH, which is equal for
all channels and conditions,
and takes the value 0.1 by default.
Larger values will will make the decoding problem harder,
because it will also make the phase distributions to overlap more.

Now, once a channel hits its target phase, it will entrain
at a certain frequency for some time.
This is parametrised by two options, FREQUENCIES_ENTRAINMENT and ENTRAINMENT_REGIME.

The first option, FREQUENCIES_ENTRAINMENT,
defines the number of different frequencies at which
the channels can entrain, therefore determining the frequency diversity of the effect.
Whatever we specify here, a channel will entrain to the same frequency for all trials.
FREQUENCIES_ENTRAINMENT is specified as an integer
between 1 and the maximum number of relevant channels
(i.e. the actual number of channels minus the number of channels where CHAN_PROB==0).
For example, if FREQUENCIES_ENTRAINMENT==1 then all channels entrain to the same frequency,
(half the fastest frequency of the data, as determined by FREQ_RANGE).
If FREQUENCIES_ENTRAINMENT is higher than 1, for example 3,
then channels can have one of three frequencies
(all three between 0.25 * FREQ_RANGE[1] and 0.75 * FREQ_RANGE[1]).
Frequencies are randomly assigned to each channel from the pool of available frequencies.
Alternatively, FREQUENCIES_ENTRAINMENT can be a tuple containing the possible frequencies
(in angular frequency); again, each channel is
randomly assigned a frequency within the possibilities.
Finally, if FREQUENCIES_ENTRAINMENT==0, then every channel has a different frequency
from a grid of equidistant frequencies
(between 0.25 * FREQ_RANGE[1] and 0.75 * FREQ_RANGE[1]);
this case is the one of maximum frequency diversity.

The second option is about whether channels entrain
to a sinusoid (if ENTRAINMENT_REGIME == linear)
or entrain to a time-varying instantaneous frequency, i.e. with an irregular phase progression
(if ENTRAINMENT_REGIME == nonlinear).
If the entrainment is linear, then the entrainment frequency for a given channel
keeps to the frequency as defined per the previous paragraph, and does not change at any moment.
If the entrainment is nonlinear,
then the entrainment starts at the channel-specific frequency as defined above,
and then it starts drifting according to random Gaussian walk,
with standard deviation given by the dictionary key FREQUENCY_NONLINEARITY_RATE
(by default to 0.05, the larger this option is,
the more varying is the entraining frequency and the more it changes across trials as time passes).
Note that in this case the frequency trajectory is unique for each channel but shared across trials
(that is, the random walk is sampled once per channel and used for all trials).
Most examples here and in Jupyter notebook#2
are generated with a linear entraning frequency.

Altogether, this is an example of the dictionary of options

evoked_options = {
    "phase_reset": True,
    "amplitude_modulation": False,
    "additive_response": False,
    "additive_oscillation": False,
    "CHAN_PROB": 1/4,
    "DIFF_PH": math.pi,
    "STD_PH": 0.5 * math.pi,
    "FREQUENCIES_ENTRAINMENT": 0,
    "ENTRAINMENT_REGIME": 'linear'
    }







Amplitude effects

The second type of effect is an amplitude effect on the ongoing oscillation,
where the amplitude (i.e. the unsigned square root of the power) is multiplied by a factor
that can be condition-specific or the same for all conditions.
This has no effect on the phase, as it just increases the power of the ongoing signal
(so it should not be confused with an additive effect on the amplitude which does change phase;
see next section for that).
To have a amplitude effect, we have to specify amplitude_reset=True
in the task options dictionary.
Note that just by having an amplitude effect without
a phase effect would not result in any phase locking
across trials, and therefore there will be no gain in decoding accuracy.
However, an amplitude effect can increase decoding accuracy when there is already a phase effect
(either by phase resetting or by an additive response).

The configuration of the amplitude effect is specified using the dictionary key AMP,
where values higher than 1.0 produce an increment in amplitude by that factor
(and, values less than 1.0 would produce a proportional decrement).
It can be a 2D numpy array with dimension (Q by channels, where Q is the number of conditions),
or a 1D numpy array Q elements
(such that all channels exhibit the same amplitude change),
or just a float value
(such that all channels and conditions have the same amplitude change).

An example of the dictionary of options would be

evoked_options = {
    "phase_reset": True,
    "amplitude_modulation": True,
    "additive_response": False,
    "additive_oscillation": False,
    "AMP": 2.0
    }







Additive non-oscillatory responses

The third type of effect is having one or more additive non-oscillatory responses
with condition-specific values.
For example, we could have a positive additive response right after stimulus presentation, and
a negative additive response a bit later in the trial.
Note that this is different from the previous effect,
which was just an enhancement of the ongoing signal’s power with no phase information.
To use this type of effect, we have to specify additive_response=True
in the task options dictionary.

The magnitude added to the signal is given by samples of a Gaussian distribution,
where the sampling is done per trial.
The mean of this distribution is given by the dictionary key ADDR,
which can be:


	A 3D numpy array with dimension (Q by channels by J,
where Q is the number of conditions and J is the number of additive responses).


	A 2D numpy array with dimension (Q by channels),


	if there is only one additive effect (i.e. if J=1).


	A 1D numpy array with Q elements, such that all channels exhibit the same change,


	considering only one additive effect.




If ADDR is not specified, we will assume one additive effect only;
then the key DIFF_ADDR will be used to set up ADDR;
in this case, the conditions’ means will be spanned
within a range (-0.5 DIFF_ADDR, +0.5 DIFF_ADDR).
For example, if DIFF_ADDR=1.0 (the default value) and there are Q=2 conditions,
then the mean of the first condition will be -0.5 and
the mean phase of the second condition will be 0.5.
If there are Q=3 conditions, then the first is -0.5, the second is 0.0, and the third +0.5.
Larger values of DIFF_ADDR (which make the values of ADDR more different across conditions)
will make the decoding problem easier.

The standard deviation of the distribution is given by the key STD_ADDR,
which is equal for all channels and conditions,
and takes the value 0.5 by default.
Larger values will will make the decoding problem harder.

An example of the dictionary of options would be

evoked_options = {
    "phase_reset": True,
    "amplitude_modulation": False,
    "additive_response": True,
    "additive_oscillation": False,
    "DIFF_ADDR": 1.0,
    "STD_ADDR": 0.5
    }







Additive oscillatory responses

The fourth type of effect is an additive oscillatory response
with a condition-specific amplitude.
Note that this is different from phase reset effect,
because it does not affect the ongoing oscillation, but adds another, separate oscillatory signal.
To activate this type of effect, we have to specify additive_oscillation=True
in the task options dictionary.
Unlike with the additive non-oscillatory response, we can only have one additive oscillatory effect.

An additive oscillation is parametrised by its amplitude
\(\alpha\), phase lag \(\gamma\), and frequency \(\omega\),
as per:


\[\alpha\, \mathrm{sin}(t \, \omega \, + \, \gamma)\]

For example, two conditions with equal amplitude and frequency, but different
phase lag, will be decodable because of the systematic difference in phase.
The phase shift is specified by the dictionary key ADDOP,
either a 1D numpy array with Q elements,
or a 2D numpy array with dimension (Q by channels).
Similarly, amplitude and frequency are specified by
ADDOA and ADDOF, also 1D or 2D.

For each trial, amplitude, phase lag and frequency are sampled from a
Gaussian distribution with mean given by ADDOA, ADDOP and ADDOF,
and standard deviation given by STD_ADDOA, STD_ADDOP and STD_ADDOF.

An example of code to set this up:

import math

ADDOP = np.zeros((Q,nchannels)) # different phases per condition
ADDOP[0,:] = -20
ADDOP[1,:] = +20
ADDOF = np.zeros((Q,nchannels)) # frequencies shared across conditions
ADDOF[0:,] = 0.6 * np.linspace(0.25,0.75,nchan) * math.pi/4
ADDOF[1:,] = 0.6 * np.linspace(0.25,0.75,nchan) * math.pi/4

evoked_options = {
    "phase_reset": True,
    "amplitude_modulation": False,
    "additive_response": False,
    "additive_oscillation": True,
    "ADDOP": ADDOP, "STD_ADDOP": 0.01,
    "ADDOF": ADDOF, "STD_ADDOF": 0.01
    }







Response functions

Once a stimulus is presented, the effects have certain timing that is common to all trials.
In the case of an amplitude or additive signal effect,
the effect will start some time after stimulus presentation, then reach a peak of activation,
and then wane off.
In the case of a phase effect, then the “maximum activation” corresponds to the time point
when the phase hits the target phase (i.e. phase reset is completed);
then the frequency entrainment starts, with a strength that progressively wanes off.

This section is about how to construct this response function.
This is done with kernel functions, which we can parametrise through the dictionary keys
KERNEL_TYPE and KERNEL_PAR.
These parameters cover the four types of effect
(phase, amplitude, non-oscillatory additive response and oscillatory additive response).
However, it is possible to parametrise the response function of each type of effect separately,
such that the effects don’t have the same exact dynamics.
For example, we would use this if we want to have different
additive responses each with different activation timings,
plus an slower amplitude effect.
For this, we use the options:


	KERNEL_TYPE_PH and KERNEL_PAR_PH for phase,


	KERNEL_TYPE_AMP and KERNEL_PAR_AMP for amplitude,


	KERNEL_TYPE_ADDR and KERNEL_PAR_ADDR for the additive non-oscillatory response.


	KERNEL_TYPE_ADDO and KERNEL_PAR_ADDO for the additive oscillatory response.




In the case of the additive non-oscillatory response,
there might be more than one response (e.g. a positive response followed by a negative response).
If we wish to model more than one response, we will instead use
KERNEL_TYPE_ADDR_0, KERNEL_TYPE_ADDR_1, etc;
and KERNEL_PAR_ADDR_0, KERNEL_PAR_ADDR_1, etc.

If these options are not specified,
then they will inherit the values from KERNEL_TYPE and KERNEL_PAR.
All the specifications below for KERNEL_TYPE and KERNEL_PAR apply for
the effect-specific options.

The toolbox currently implements two response functions:


	An exponential response function


	A logarithmic response function




To allow for asymmetric response functions (around the time point of maximum activation).
we implemented a piecewise response function.
The default behaviour is that the response function is exponential on the left
(before reaching the time point of maximum),
and logarithmic on the right.
This behaviour can be changed through the dictionary key KERNEL_TYPE,
which is a tuple of strings that takes ('Exponential','Log') by default
(for left and right of the maximum activation, respectively).

The kernels are parametrised by the dictionary key KERNEL_PAR,
which is also a tuple of two elements,
the first for the left side of the piecewise function and the second for the right side.
Optionally, KERNEL_PAR can have a third element,
referring to the delay of the response function after stimulus presentation.
This has a similar effect to the parameter DELAY (see below) except that
it can be effect-specific (that is, if we use it in, for example, KERNEL_TYPE_AMP),
which DELAY cannot;
but it cannot be condition-specific, which DELAY can.

For the exponential kernel,
we use an exponential function \(e^{-(t - t_{max})}\)
that finds its maximum value 1.0 at the point of maximum activation \(t_{max}\).
The parameter in KERNEL_PAR here is just
a number indicating the number of time points
that the kernel takes from going from 0.0 (no activation) to 1.0 (the maximum activation);
the larger is this number, the longer it takes for the phase reset to take effect.
(Normally exponential functions are parametrised by a radius parameter;
here he just adjust the radius according to the desired width of the kernel in time points,
which has an clearer interpretation).
For example, if the left side of the piecewise function is exponential,
then KERNEL_PAR[0]==50 means that once the response function starts building up,
it takes it 50 time points to reach 1.0.
The default value is round(T*0.2), where T is the number of time points in the trial.

For the logarithmic kernel, we use a function of the form
\(-\log(1+(t-t_{max})^{\zeta}))\).
The parameters controlling this function are given as a tuple of three elements.
The first (corresponding to \(\zeta\)) determines the shape of the logarithmic function
(default value 10).
The second is the total length of the logarithmic activation
in time points, from the moment its value is 0.0 until it reaches 1.0
(default value round(T*0.4)).
The third is some extra between-trial variability on top of the second argument,
such that the length of the logarithmic activation is increased in every trial by
a number of time points between zero and this value (default value 0, so no variability).
The effect of these parameters is best understood by playing with it,
which we can do with the method graphics.plot_activation_function();
see the examples below.

As mentioned, the third element of KERNEL_TYPE is optional and, if specified,
refers to the delay of the response function after stimulus presentation.


[image: _images/f1.png]

graphics.plot_activation_function(kernel_type=(‘Exponential’,’Log’),kernel_par=(50,(10,200,0)))




[image: _images/f2.png]

graphics.plot_activation_function(kernel_type=(‘Exponential’,’Log’),kernel_par=(25,(10,100,0),25))




[image: _images/f3.png]

graphics.plot_activation_function(kernel_type=(‘Exponential’,’Log’),kernel_par=(100,(5,100,0)))




[image: _images/f4.png]

graphics.plot_activation_function(kernel_type=(‘Exponential’,’Log’),kernel_par=(150,(2,100,0)))





Delays

Another type of variability that, if it is condition-specific,
a decoding algorithm might use for prediction, is regarding the delays of the response.
The toolbox allows for three types of delays, which affect to all types of effects.
Only the first is condition-specific.

First, we can have a condition-specific, consistent delay across trials.
This is specified by the dictionary key DELAY,
which can be a numpy 2D array with dimension
(Q by channels, where Q is the number of conditions) or 1D with Q elements
(such that all channels exhibit the same condition-specific delay).
The values are specified in number of time points.
By default, the value of DELAY is randomly sampled once with uniform probability between 25 and 30.

Second, we can have a random delay that is not consistent across trials,
is not condition-specific,
and that, for a given trial, is shared by all channels (namely, it is absolute).
This is parametrised by the dictionary key DELAY_ABSOLUTE_JITTER,
such that, for each trial, there is a random delay shared across channels varying between 0
time points and DELAY_ABSOLUTE_JITTER time points.
The default value is 0.0 (so no delay).
We can think of this type of delay as attentional:
sometimes one responds faster, sometimes slower;
without such speed necessarily having to do anything with the condition.

Third, we can have a random delay that is not consistent across trials,
is not condition-specific,
and is different for every channel (namely, it is relative).
This is specified by the dictionary key DELAY_JITTER,
such that, for each trial and each channel, there is a random delay varying between 0
time points and DELAY_JITTER time points.
The default value is 2.5.

Altogether, the total delay for a given channel and trial is given
by the sum of the three types of delay
(plus the delay in the response function if specified; see above),
rounded to the closest integer.



Sampling stimuli

We now discuss how to sample stimuli (or conditions),
or how to provide a previously created array of stimuli.
As mentioned before,
we use the word stimuli just as a convention, but it could also be an action or a decision
if we were interested in modelling a decision making task.

In the generative model, stimuli ought to be discrete;
that is, for each value of the stimulus,
phase, amplitude or additive effects are generated according
to parameters that depend on the identity of the stimulus that has been presented.
The stimulus information is a numpy array of dimension
(T by N, where T is the number of time points within a trial and N is the number of trials),
with integer values between 0 and the total number of stimulus categories Q.
That is, if stimulus(t,j)==2 it means that the second stimulus is presented
at time point t for trial j;
and if stimulus(t,j)==0, then no stimulus is presented at that time point.

While it is possible to manually make and
use arrays of stimuli where the timing of the stimuli varies per trial,
the function provided in the toolbox for sampling stimuli will make arrays of stimuli
such that the stimulus occurs at the same time point for all trials
(by default at one tenth of the trial;
e.g. if T=400, the stimulus is always presented at t=40).

To generate an array of stimuli with two different stimuli, where the stimulus occurs at t=100:

ds = sample_data.DataSampler(T=400,nchan=10,Q=2,
        spont_options=spont_options,
        evoked_options=evoked_options)
stim = ds.sample_stimulus(N=200,Q=2,T=400,t=100)





We can then sample data using

(X,Phase,Freq,Amplitude,transient_event,stim) = ds.sample(N=200,Stimulus=stim)





If we do not supply the stimulus to the sample() method,
it will automatically be sampled by using sample_stimulus() with default parameters.
The stimulus is returned as the sixth output argument of sample().
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Decoding analysis

After sampling, the goal is to put the data through the lens of decoding analysis
in order to compare with real data. In particular, we want to look at
the temporal generalisation matrix (TGM)
a (T by T) matrix of decoding accuracies,
such that one decoding model is trained per time point and tested on each one of
the time points of the trial in a cross-validation fashion.
The diagonal of the TGM reflects how well can we can decode information time point by time point,
which is often interpreted as
reflecting the waxing and waning of the different stages of stimulus processing (or decision making).
The off-diagonal of the TGM shows how well decoding models generalize to time points
different to those where they were trained; and, therefore,
is argued to reflect the stability of the neural code for the neural representation under study.

Although the generative model described above can only sample discrete stimuli,
the decoders here can deal with both discrete and continuous data, i.e. classification and regression.
Of course, they can be applied to real data just as well,
as far as they are in the same time by trials by channels format.
For regression, linear discriminant analysis is used;
for classification, ridge regression is used.
Importantly, the decoders assume that only one stimulus is presented per trial.

We first create a Decoder object,
where we specify if the decoding problem is a classification one, as well as other options.

decoder = decoders.Decoder(classification=True,binsize=1)





The options for the initialisation of the Decoder object are


	classification: is this a classification problem?
Default: True.


	get_TGM: whether we get a (T x T) TGM or just a vector of accuracies with T elements
(i.e. without generalising).
Default value: True.


	binsize: the size of the bin or window on which to perform the training and the predictions.
Default value: 1 (that is, time point by time point).


	binstep: by how many time points we slide the window,
if we are doing a sliding window prediction (by specifying binsize > 1).
Default value: 1.


	cvscheme: the (optional) cross-validation scheme.
This is logical numpy array of dimensions (no. of trials by no. of cross-validation folds).
If an element [i,j] is True, that means that the i-th trial will be using for testing
in the j-th fold; if it is False, it will be used for training.


	ncv: number of cross-validation folds (only used if cvscheme was not supplied).
Default value: 10.


	alpha: regularisation parameter. Default: 0.01.




For example, we could manually create a cross-validation scheme as

test_inds = np.zeros((N,10),dtype=bool)
for icv in range(10):
    testing = (np.arange(N/10) + icv * (N/10)).astype(int)
    test_inds[testing,icv] = True
cvscheme = test_inds





And specify it as an option in the initialisation of the object.
This might be useful if there is any specific structure in the trial set we wish to account for.

Then, we can run the decoder:

decoder = decoders.Decoder(classification=True,cvscheme=cvscheme)
accuracy,betas = decoder.decode(X,stim)





The output has two variables, accuracy and betas.

The first is obviously the accuracy of the cross-validated decoder.
If we are computing a TGM (option get_TGM=True)
accuracy will be
(T by T by (Q*(Q-1)/2))-dimensional,
if this is a classification problem with more than two conditions;
or (T by T)-dimensional
if this is a two-condition classification problem or a regression problem (a continuous stimulus).
If get_TGM=False, then accuracy is either (T by (Q*(Q-1)/2))
or a 1D array with T elements, for the Q>2 case and otherwise.
For classification, accuracy is the proportion of correctly predicted classes;
for regression, this the correlation between the ground-truth and the predicted stimulus values.

The second output argument is betas, containing the decoding coefficients per time point or bin.
Its dimension is channels by bins/time points by (Q*(Q-1)/2),
or just channels by bins/time points if this is two-class classification or regression.
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Graphics

The toolbox provides a few unsophisticated functions, mainly to plot
the sampled data and the decoding results.

To plot the signals together with the components that made it up,
there is the method graphics.plot_signal(),
which can take as arguments


	X: the data


	Phase: the phase of the ongoing oscillation


	Freq: the frequency of the ongoing oscillation


	Amplitude: the amplitude of the ongoing oscillation (the square root of the power)


	Additive_response: the sum of the additive responses


	Stimulus: the array of stimuli


	n: the index of the trial to plot


	j: the index of the channel to plot





[image: _images/example_signals2.png]

graphics.plot_signal(X,Phase,Freq,Amplitude,Additive_response,None,n=0,j=0)



Any of the second to sixth argument can be omitted ot set to None,
and it will be skipped.
Note that phase, frequency and amplitude refer to the ongoing (possibly phase reset)
signal, before any additive response or measurement noise is added.
An example of this function can be seen above.

To plot an average evoked response for a given channel, we can use the method
graphics.plot_erp(), with arguments


	Stimulus: the array of stimuli, which has to be categorical (see above)


	X: the data


	Phase: the phase of the ongoing oscillation


	Freq: the frequency of the ongoing oscillation


	Amplitude: the amplitude of the ongoing oscillation (the square root of the power)


	Additive_response: the sum of the additive responses


	j: the index of the channel to plot





[image: _images/erp.png]

graphics.plot_erp(Stimulus,X,Phase,Freq,Amplitude,Additive_response,j=0)



To plot the TGM or time-point-by-time-point decoding accuracies,
there is the method graphics.plot_accuracy(),
which takes the accuracy as given by decoder.decode() and
the colour limits (only used if a TGM is provided).
If we performed decoding for more than 2 classes,
then we should index the pair of conditions that we wish to plot
out of the (Q*(Q-1)/2) pairs:


[image: _images/accuracy.png]

graphics.plot_accuracy(accuracy[:,:,1],(0.3,0.7))



We can also plot the decoding coefficients (the betas) using graphics.plot_betas(betas):


[image: _images/betas.png]

graphics.plot_betas(betas)



Finally, we can plot the activation functions to see how the parameters
affect their shape. For this we can use graphics.plot_activation_function()
with parameters


	kernel_type: e.g. ('Exponential','Log'),


	kernel_par: e.g. (25,(10,150,50),


	T: number of time points in the trial


	t: when the stimulus occurs?


	delay of the response


	jitter in the delay.




For more information about kernel parameters and delays, as well as examples, see above.
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